914 lines
21 KiB
Go
914 lines
21 KiB
Go
// encrypt.go -- Ed25519 based encrypt/decrypt
|
|
//
|
|
// (c) 2016 Sudhi Herle <sudhi@herle.net>
|
|
//
|
|
// Licensing Terms: GPLv2
|
|
//
|
|
// If you need a commercial license for this work, please contact
|
|
// the author.
|
|
//
|
|
// This software does not come with any express or implied
|
|
// warranty; it is provided "as is". No claim is made to its
|
|
// suitability for any purpose.
|
|
//
|
|
|
|
// Implementation Notes for Encryption/Decryption:
|
|
//
|
|
// Header: has 3 parts:
|
|
// - Fixed sized header
|
|
// - Variable sized protobuf encoded header
|
|
// - SHA256 sum of both above.
|
|
//
|
|
// Fixed size header:
|
|
// - Magic: 7 bytes
|
|
// - Version: 1 byte
|
|
// - VLen: 4 byte
|
|
//
|
|
// Variable Length Segment:
|
|
// - Protobuf encoded, per-recipient wrapped keys
|
|
//
|
|
// The variable length segment consists of one or more
|
|
// recipients, each with their individually wrapped keys.
|
|
//
|
|
// The input data is encrypted with an expanded random 32-byte key:
|
|
// - hkdf-sha512 of random key, salt, context
|
|
// - the hkdf process yields a data-encryption key, nonce and hmac key.
|
|
// - we use the header checksum as the 'salt' for HKDF; this ensures that
|
|
// any modification of the header yields different keys
|
|
//
|
|
// We also calculate the cumulative hmac-sha256 of the plaintext blocks.
|
|
// - When sender identity is present, we sign the final hmac and append
|
|
// the signature as the "trailer".
|
|
// - When sender identity is NOT present, we put random bytes as the
|
|
// "signature". ie in either case, there is a trailer.
|
|
//
|
|
// Note: If the trailer is missing from a sigtool encrypted file - the
|
|
// recipient has no guarantees of content immutability (ie tampering
|
|
// from one of the _other_ recipients).
|
|
//
|
|
// The input data is broken up into "chunks"; each no larger than
|
|
// maxChunkSize. The default block size is "chunkSize". Each block
|
|
// is AEAD encrypted:
|
|
// AEAD nonce = header.nonce || block#
|
|
// AD of AEAD = chunk length+eof marker
|
|
//
|
|
// The encrypted block (includes the AEAD tag) length is written
|
|
// as a big-endian 4-byte prefix. The high-order bit of this length
|
|
// field is set for the last-block (denoting EOF).
|
|
//
|
|
|
|
package sign
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/ed25519"
|
|
"crypto/hmac"
|
|
"crypto/sha256"
|
|
"crypto/sha512"
|
|
"crypto/subtle"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"hash"
|
|
"io"
|
|
"os"
|
|
|
|
"golang.org/x/crypto/curve25519"
|
|
"golang.org/x/crypto/hkdf"
|
|
|
|
"git.rgst.io/homelab/sigtool/v3/internal/pb"
|
|
)
|
|
|
|
// Encryption chunk size = 4MB
|
|
const (
|
|
// The latest version of the tool's output file format
|
|
_SigtoolVersion = 3
|
|
|
|
chunkSize uint32 = 4 * 1048576 // 4 MB
|
|
maxChunkSize uint32 = 1 << 30
|
|
_EOF uint32 = 1 << 31
|
|
|
|
_Magic = "SigTool"
|
|
_MagicLen = len(_Magic)
|
|
_FixedHdrLen = _MagicLen + 1 + 4 // 1: version, 4: len of variable segment
|
|
|
|
_AesKeySize = 32
|
|
_AEADNonceSize = 12
|
|
_SaltSize = 32
|
|
_RxNonceSize = 12 // nonce size of per-recipient encrypted blocks
|
|
|
|
_WrapReceiver = "Receiver Key"
|
|
_WrapSender = "Sender Sig"
|
|
_DataKeyExpansion = "Data Key Expansion"
|
|
)
|
|
|
|
// Encryptor holds the encryption context
|
|
type Encryptor struct {
|
|
pb.Header
|
|
key []byte // root key
|
|
|
|
nonce []byte // nonce for the data encrypting cipher
|
|
buf []byte // I/O buf (chunk-sized)
|
|
|
|
ae cipher.AEAD
|
|
hmac hash.Hash
|
|
|
|
// ephemeral key
|
|
encSK []byte
|
|
|
|
// sender identity
|
|
sender *PrivateKey
|
|
|
|
auth bool // set if the sender idetity is sent
|
|
started bool
|
|
stream bool
|
|
}
|
|
|
|
// Create a new Encryption context for encrypting blocks of size 'blksize'.
|
|
// If 'sk' is not nil, authenticate the sender to each receiver.
|
|
func NewEncryptor(sk *PrivateKey, blksize uint64) (*Encryptor, error) {
|
|
var blksz uint32
|
|
|
|
switch {
|
|
case blksize == 0:
|
|
blksz = chunkSize
|
|
case blksize > uint64(maxChunkSize):
|
|
blksz = maxChunkSize
|
|
default:
|
|
blksz = uint32(blksize)
|
|
}
|
|
|
|
// generate ephemeral Curve25519 keys
|
|
esk, epk, err := newSender()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("encrypt: %w", err)
|
|
}
|
|
|
|
key := randBuf(_AesKeySize)
|
|
salt := randBuf(_SaltSize)
|
|
|
|
e := &Encryptor{
|
|
Header: pb.Header{
|
|
ChunkSize: blksz,
|
|
Salt: salt,
|
|
Pk: epk,
|
|
},
|
|
|
|
key: key,
|
|
encSK: esk,
|
|
sender: sk,
|
|
}
|
|
|
|
if err = e.addSenderSig(sk); err != nil {
|
|
return nil, fmt.Errorf("encrypt: %w", err)
|
|
}
|
|
|
|
return e, nil
|
|
}
|
|
|
|
// Add a new recipient to this encryption context.
|
|
func (e *Encryptor) AddRecipient(pk *PublicKey) error {
|
|
if e.started {
|
|
return ErrEncStarted
|
|
}
|
|
|
|
w, err := e.wrapKey(pk)
|
|
if err == nil {
|
|
e.Keys = append(e.Keys, w)
|
|
}
|
|
|
|
return err
|
|
}
|
|
|
|
// Encrypt the input stream 'rd' and write encrypted stream to 'wr'
|
|
func (e *Encryptor) Encrypt(rd io.Reader, wr io.WriteCloser) error {
|
|
if e.stream {
|
|
return ErrEncIsStream
|
|
}
|
|
|
|
if !e.started {
|
|
err := e.start(wr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
buf := make([]byte, e.ChunkSize)
|
|
|
|
var i uint32
|
|
var eof bool
|
|
for !eof {
|
|
n, err := io.ReadAtLeast(rd, buf, int(e.ChunkSize))
|
|
if err != nil {
|
|
switch err {
|
|
case io.EOF, io.ErrClosedPipe, io.ErrUnexpectedEOF:
|
|
eof = true
|
|
default:
|
|
return fmt.Errorf("encrypt: I/O read error: %w", err)
|
|
}
|
|
}
|
|
|
|
if n >= 0 {
|
|
err = e.encrypt(buf[:n], wr, i, eof)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
i++
|
|
}
|
|
}
|
|
|
|
return wr.Close()
|
|
}
|
|
|
|
// Begin the encryption process by writing the header
|
|
func (e *Encryptor) start(wr io.Writer) error {
|
|
varSize := e.Size()
|
|
|
|
buffer := make([]byte, _FixedHdrLen+varSize+sha256.Size)
|
|
fixHdr := buffer[:_FixedHdrLen]
|
|
varHdr := buffer[_FixedHdrLen : _FixedHdrLen+varSize]
|
|
sumHdr := buffer[_FixedHdrLen+varSize:]
|
|
|
|
// Now assemble the fixed header
|
|
copy(fixHdr[:], []byte(_Magic))
|
|
fixHdr[_MagicLen] = _SigtoolVersion
|
|
binary.BigEndian.PutUint32(fixHdr[_MagicLen+1:], uint32(varSize))
|
|
|
|
// Now marshal the variable portion
|
|
_, err := e.MarshalTo(varHdr[:varSize])
|
|
if err != nil {
|
|
return fmt.Errorf("encrypt: can't marshal header: %w", err)
|
|
}
|
|
|
|
h := sha256.New()
|
|
h.Write(buffer[:_FixedHdrLen+varSize])
|
|
cksum := h.Sum(sumHdr[:0])
|
|
|
|
// now make the data encryption keys, nonces etc.
|
|
outbuf := make([]byte, sha256.Size+_AesKeySize+_AEADNonceSize)
|
|
|
|
// we mix the header checksum (and it captures the sigtool version, sender
|
|
// identity, etc.)
|
|
buf := expand(outbuf, e.key, cksum, []byte(_DataKeyExpansion))
|
|
|
|
var dkey, hmackey []byte
|
|
|
|
e.nonce, buf = buf[:_AEADNonceSize], buf[_AEADNonceSize:]
|
|
dkey, buf = buf[:_AesKeySize], buf[_AesKeySize:]
|
|
hmackey = buf
|
|
|
|
aes, err := aes.NewCipher(dkey)
|
|
if err != nil {
|
|
return fmt.Errorf("encrypt: %w", err)
|
|
}
|
|
|
|
if e.ae, err = cipher.NewGCM(aes); err != nil {
|
|
return fmt.Errorf("encrypt: %w", err)
|
|
}
|
|
|
|
// Finally write out the header
|
|
err = fullwrite(buffer, wr)
|
|
if err != nil {
|
|
return fmt.Errorf("encrypt: %w", err)
|
|
}
|
|
|
|
e.hmac = hmac.New(sha256.New, hmackey)
|
|
e.buf = make([]byte, e.ChunkSize+4+uint32(e.ae.Overhead()))
|
|
e.started = true
|
|
|
|
debug("encrypt:\n\thdr-cksum: %x\n\taes-key: %x\n\tnonce: %x\n\thmac-key: %x\n",
|
|
cksum, dkey, e.nonce, hmackey)
|
|
|
|
return nil
|
|
}
|
|
|
|
// encrypt exactly _one_ block of data
|
|
// The nonce is constructed from the salt, block# and block-size.
|
|
// This protects the output stream from re-ordering attacks and length
|
|
// modification attacks. The encoded length & block number is used as
|
|
// additional data in the AEAD construction.
|
|
func (e *Encryptor) encrypt(pt []byte, wr io.Writer, i uint32, eof bool) error {
|
|
var z uint32 = uint32(len(pt))
|
|
var nonce [_AEADNonceSize]byte
|
|
|
|
// mark last block
|
|
if eof {
|
|
z |= _EOF
|
|
}
|
|
|
|
copy(nonce[:], e.nonce)
|
|
|
|
// now change the upper bytes to track the block#; we use the len+eof as AD
|
|
binary.BigEndian.PutUint32(nonce[:4], i)
|
|
|
|
// put the encoded length+eof at the start of the output buf
|
|
b := e.buf[:4]
|
|
ctbuf := e.buf[4:]
|
|
|
|
binary.BigEndian.PutUint32(b, z)
|
|
ct := e.ae.Seal(ctbuf[:0], nonce[:], pt, b)
|
|
|
|
// total number of bytes written
|
|
n := len(ct) + 4
|
|
err := fullwrite(e.buf[:n], wr)
|
|
if err != nil {
|
|
return fmt.Errorf("encrypt: %w", err)
|
|
}
|
|
|
|
e.hmac.Write(b)
|
|
e.hmac.Write(pt)
|
|
|
|
if eof {
|
|
return e.writeTrailer(wr)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Write a trailer:
|
|
// - if authenticating sender, sign the hmac and put the signature in the trailer
|
|
// - if not authenticating sender, write random bytes to the trailer
|
|
func (e *Encryptor) writeTrailer(wr io.Writer) error {
|
|
var tr []byte
|
|
|
|
switch e.auth {
|
|
case true:
|
|
var hmac [sha256.Size]byte
|
|
|
|
e.hmac.Sum(hmac[:0])
|
|
|
|
// We know sender is non null.
|
|
sig, err := e.sender.SignMessage(hmac[:], "")
|
|
if err != nil {
|
|
return fmt.Errorf("encrypt: trailer: %w", err)
|
|
}
|
|
tr = sig.Sig
|
|
|
|
case false:
|
|
tr = randBuf(ed25519.SignatureSize)
|
|
|
|
}
|
|
|
|
if err := fullwrite(tr, wr); err != nil {
|
|
return fmt.Errorf("encrypt: trailer %w", err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Decryptor holds the decryption context
|
|
type Decryptor struct {
|
|
pb.Header
|
|
|
|
ae cipher.AEAD
|
|
hmac hash.Hash
|
|
|
|
sender *PublicKey
|
|
|
|
rd io.Reader
|
|
buf []byte
|
|
nonce []byte // nonce for the data decrypting cipher
|
|
|
|
key []byte // Decrypted root key
|
|
hdrsum []byte // cached header checksum
|
|
auth bool // flag set to true if sender signed the key
|
|
eof bool
|
|
stream bool
|
|
}
|
|
|
|
// Create a new decryption context and if 'pk' is given, check that it matches
|
|
// the sender
|
|
func NewDecryptor(rd io.Reader) (*Decryptor, error) {
|
|
var b [_FixedHdrLen]byte
|
|
|
|
_, err := io.ReadFull(rd, b[:])
|
|
if err != nil {
|
|
return nil, fmt.Errorf("decrypt: err while reading header: %w", err)
|
|
}
|
|
|
|
if bytes.Compare(b[:_MagicLen], []byte(_Magic)) != 0 {
|
|
return nil, ErrNotSigTool
|
|
}
|
|
|
|
// Version check
|
|
if b[_MagicLen] != _SigtoolVersion {
|
|
return nil, fmt.Errorf("decrypt: Unsupported version %d; this tool only supports v%d",
|
|
b[_MagicLen], _SigtoolVersion)
|
|
}
|
|
|
|
varSize := binary.BigEndian.Uint32(b[_MagicLen+1:])
|
|
|
|
// sanity check on variable segment length
|
|
if varSize > 1048576 {
|
|
return nil, ErrHeaderTooBig
|
|
}
|
|
if varSize < 32 {
|
|
return nil, ErrHeaderTooSmall
|
|
}
|
|
|
|
// SHA256 is the trailer part of the file-header
|
|
varBuf := make([]byte, varSize+sha256.Size)
|
|
|
|
_, err = io.ReadFull(rd, varBuf)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("decrypt: error while reading header: %w", err)
|
|
}
|
|
|
|
// The checksum in the header
|
|
verify := varBuf[varSize:]
|
|
|
|
// the checksum we calculated
|
|
var csum [sha256.Size]byte
|
|
|
|
h := sha256.New()
|
|
h.Write(b[:])
|
|
h.Write(varBuf[:varSize])
|
|
cksum := h.Sum(csum[:0])
|
|
|
|
if subtle.ConstantTimeCompare(verify, cksum) == 0 {
|
|
return nil, ErrBadHeader
|
|
}
|
|
|
|
d := &Decryptor{
|
|
rd: rd,
|
|
hdrsum: cksum,
|
|
}
|
|
|
|
err = d.Unmarshal(varBuf[:varSize])
|
|
if err != nil {
|
|
return nil, fmt.Errorf("decrypt: decode error: %w", err)
|
|
}
|
|
|
|
if d.ChunkSize == 0 || d.ChunkSize >= maxChunkSize {
|
|
return nil, fmt.Errorf("decrypt: invalid chunkSize %d", d.ChunkSize)
|
|
}
|
|
|
|
if len(d.Salt) != _SaltSize {
|
|
return nil, fmt.Errorf("decrypt: invalid nonce length %d", len(d.Salt))
|
|
}
|
|
|
|
if len(d.Keys) == 0 {
|
|
return nil, ErrNoWrappedKeys
|
|
}
|
|
|
|
// sanity check on the wrapped keys
|
|
for i, w := range d.Keys {
|
|
if len(w.DKey) <= _AesKeySize {
|
|
return nil, fmt.Errorf("decrypt: wrapped key %d: wrong-size encrypted key", i)
|
|
}
|
|
}
|
|
|
|
return d, nil
|
|
}
|
|
|
|
// Use Private Key 'sk' to decrypt the encrypted keys in the header and optionally validate
|
|
// the sender
|
|
func (d *Decryptor) SetPrivateKey(sk *PrivateKey, senderPk *PublicKey) error {
|
|
var err error
|
|
var key []byte
|
|
|
|
for i, w := range d.Keys {
|
|
key, err = d.unwrapKey(w, sk)
|
|
if err != nil {
|
|
return fmt.Errorf("decrypt: can't unwrap key %d: %w", i, err)
|
|
}
|
|
if key != nil {
|
|
d.key = key
|
|
d.sender = senderPk
|
|
goto havekey
|
|
}
|
|
}
|
|
|
|
return ErrBadKey
|
|
|
|
havekey:
|
|
if err := d.verifySender(key, senderPk); err != nil {
|
|
return fmt.Errorf("decrypt: %w", err)
|
|
}
|
|
|
|
outbuf := make([]byte, sha256.Size+_AesKeySize+_AEADNonceSize)
|
|
|
|
buf := expand(outbuf, d.key, d.hdrsum, []byte(_DataKeyExpansion))
|
|
|
|
var dkey, hmackey []byte
|
|
|
|
d.nonce, buf = buf[:_AEADNonceSize], buf[_AEADNonceSize:]
|
|
dkey, buf = buf[:_AesKeySize], buf[_AesKeySize:]
|
|
hmackey = buf
|
|
|
|
d.hmac = hmac.New(sha256.New, hmackey)
|
|
|
|
aes, err := aes.NewCipher(dkey)
|
|
if err != nil {
|
|
return fmt.Errorf("decrypt: %w", err)
|
|
}
|
|
|
|
d.ae, err = cipher.NewGCM(aes)
|
|
if err != nil {
|
|
return fmt.Errorf("decrypt: %w", err)
|
|
}
|
|
|
|
debug("decrypt:\n\thdr-cksum: %x\n\taes-key: %x\n\tnonce: %x\n\thmac-key: %x\n",
|
|
d.hdrsum, dkey, d.nonce, hmackey)
|
|
|
|
// We have a separate on-stack buffer for reading the header (4 bytes).
|
|
// Thus, the actual I/O buf will never be larger than the chunksize + AEAD Overhead
|
|
d.buf = make([]byte, int(d.ChunkSize)+d.ae.Overhead())
|
|
return nil
|
|
}
|
|
|
|
// AuthenticatedSender returns true if the sender authenticated themselves
|
|
// (the data-encryption key is signed).
|
|
func (d *Decryptor) AuthenticatedSender() bool {
|
|
return d.auth
|
|
}
|
|
|
|
// Decrypt the file and write to 'wr'
|
|
func (d *Decryptor) Decrypt(wr io.Writer) error {
|
|
if d.key == nil {
|
|
return ErrNoKey
|
|
}
|
|
|
|
if d.stream {
|
|
return ErrDecStarted
|
|
}
|
|
|
|
if d.eof {
|
|
return io.EOF
|
|
}
|
|
|
|
var i uint32
|
|
for i = 0; ; i++ {
|
|
c, eof, err := d.decrypt(i)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if len(c) > 0 {
|
|
err = fullwrite(c, wr)
|
|
if err != nil {
|
|
return fmt.Errorf("decrypt: %w", err)
|
|
}
|
|
}
|
|
|
|
if eof {
|
|
d.eof = true
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// Decrypt exactly one chunk of data
|
|
func (d *Decryptor) decrypt(i uint32) ([]byte, bool, error) {
|
|
var ovh uint32 = uint32(d.ae.Overhead())
|
|
var b [4]byte
|
|
var nonce [_AEADNonceSize]byte
|
|
|
|
n, err := io.ReadFull(d.rd, b[:])
|
|
if err != nil || n == 0 {
|
|
return nil, false, fmt.Errorf("decrypt: premature EOF while reading header block %d", i)
|
|
}
|
|
|
|
m := binary.BigEndian.Uint32(b[:])
|
|
eof := (m & _EOF) > 0
|
|
m &= (_EOF - 1)
|
|
|
|
// Sanity check - in case of corrupt header
|
|
switch {
|
|
case m > uint32(d.ChunkSize):
|
|
return nil, false, fmt.Errorf("decrypt: chunksize is too large (%d)", m)
|
|
|
|
case m == 0:
|
|
if !eof {
|
|
return nil, false, fmt.Errorf("decrypt: block %d: zero-sized chunk without EOF", i)
|
|
}
|
|
return nil, eof, nil
|
|
|
|
default:
|
|
}
|
|
|
|
// make the nonce - top 4 bytes are the counter
|
|
copy(nonce[:], d.nonce)
|
|
binary.BigEndian.PutUint32(nonce[:4], i)
|
|
|
|
z := m + ovh
|
|
n, err = io.ReadFull(d.rd, d.buf[:z])
|
|
if err != nil {
|
|
return nil, false, fmt.Errorf("decrypt: premature EOF while reading block %d: %w", i, err)
|
|
}
|
|
|
|
pt, err := d.ae.Open(d.buf[:0], nonce[:], d.buf[:n], b[:])
|
|
if err != nil {
|
|
return nil, false, fmt.Errorf("decrypt: can't decrypt chunk %d: %w", i, err)
|
|
}
|
|
|
|
if uint32(len(pt)) != m {
|
|
return nil, false, fmt.Errorf("decrypt: partial unsealed bytes; exp %d, saw %d", m, len(pt))
|
|
}
|
|
|
|
d.hmac.Write(b[:])
|
|
d.hmac.Write(pt)
|
|
|
|
if eof {
|
|
return d.processTrailer(pt, eof)
|
|
}
|
|
|
|
return pt, eof, nil
|
|
}
|
|
|
|
func (d *Decryptor) processTrailer(pt []byte, eof bool) ([]byte, bool, error) {
|
|
var rd [ed25519.SignatureSize]byte
|
|
|
|
_, err := io.ReadFull(d.rd, rd[:])
|
|
if err != nil {
|
|
return nil, false, fmt.Errorf("decrypt: premature EOF while reading trailer: %w", err)
|
|
}
|
|
|
|
if !d.auth {
|
|
// these are random bytes; ignore em
|
|
return pt, eof, nil
|
|
}
|
|
|
|
var hmac [sha256.Size]byte
|
|
|
|
cksum := d.hmac.Sum(hmac[:0])
|
|
ss := &Signature{
|
|
Sig: rd[:],
|
|
}
|
|
|
|
if ok := d.sender.VerifyMessage(cksum, ss); !ok {
|
|
return nil, eof, ErrBadTrailer
|
|
}
|
|
|
|
return pt, eof, nil
|
|
}
|
|
|
|
// optionally sign the checksum and encrypt everything
|
|
func (e *Encryptor) addSenderSig(sk *PrivateKey) error {
|
|
var zero [ed25519.SignatureSize]byte
|
|
var auth bool
|
|
sig := zero[:]
|
|
|
|
if e.sender != nil {
|
|
var csum [sha256.Size]byte
|
|
|
|
// We capture essential meta-data from the sender; viz:
|
|
// - Sender tool version
|
|
// - Sender generated curve25519 PK
|
|
// - session salt, root key
|
|
|
|
h := sha256.New()
|
|
h.Write([]byte(_Magic))
|
|
h.Write([]byte{_SigtoolVersion})
|
|
h.Write(e.Pk)
|
|
h.Write(e.Salt)
|
|
h.Write(e.key)
|
|
cksum := h.Sum(csum[:0])
|
|
|
|
xsig, err := e.sender.SignMessage(cksum, "")
|
|
if err != nil {
|
|
return fmt.Errorf("wrap: can't sign: %w", err)
|
|
}
|
|
sig = xsig.Sig
|
|
auth = true
|
|
}
|
|
|
|
buf := make([]byte, _AesKeySize+_AEADNonceSize)
|
|
buf = expand(buf, e.key, e.Salt, []byte(_WrapSender))
|
|
|
|
ekey, nonce := buf[:_AesKeySize], buf[_AesKeySize:]
|
|
|
|
aes, err := aes.NewCipher(ekey)
|
|
if err != nil {
|
|
return fmt.Errorf("senderId: %w", err)
|
|
}
|
|
|
|
ae, err := cipher.NewGCM(aes)
|
|
if err != nil {
|
|
return fmt.Errorf("senderId: %w", err)
|
|
}
|
|
|
|
outbuf := make([]byte, ed25519.SignatureSize+ae.Overhead())
|
|
buf = ae.Seal(outbuf[:0], nonce, sig, nil)
|
|
|
|
e.auth = auth
|
|
e.Sender = buf
|
|
|
|
return nil
|
|
}
|
|
|
|
// unwrap sender's signature using 'key' and extract the signature
|
|
// Optionally, verify the signature using the sender's PK (if provided).
|
|
func (d *Decryptor) verifySender(key []byte, senderPk *PublicKey) error {
|
|
outbuf := make([]byte, _AEADNonceSize+_AesKeySize)
|
|
buf := expand(outbuf, key, d.Salt, []byte(_WrapSender))
|
|
|
|
ekey, nonce := buf[:_AesKeySize], buf[_AesKeySize:]
|
|
|
|
aes, err := aes.NewCipher(ekey)
|
|
if err != nil {
|
|
return fmt.Errorf("unwrap: %w", err)
|
|
}
|
|
|
|
ae, err := cipher.NewGCM(aes)
|
|
if err != nil {
|
|
return fmt.Errorf("unwrap: %w", err)
|
|
}
|
|
|
|
var sigbuf [ed25519.SignatureSize]byte
|
|
var zero [ed25519.SignatureSize]byte
|
|
|
|
sig, err := ae.Open(sigbuf[:0], nonce, d.Sender, nil)
|
|
if err != nil {
|
|
return fmt.Errorf("unwrap: can't open sender info: %w", err)
|
|
}
|
|
|
|
// Did the sender actually sign anything?
|
|
if subtle.ConstantTimeCompare(zero[:], sig) == 0 {
|
|
if senderPk == nil {
|
|
return ErrNoSenderPK
|
|
}
|
|
|
|
var csum [sha256.Size]byte
|
|
|
|
h := sha256.New()
|
|
h.Write([]byte(_Magic))
|
|
h.Write([]byte{_SigtoolVersion})
|
|
h.Write(d.Pk)
|
|
h.Write(d.Salt)
|
|
h.Write(key)
|
|
cksum := h.Sum(csum[:0])
|
|
|
|
ss := &Signature{
|
|
Sig: sig,
|
|
}
|
|
|
|
if ok := senderPk.VerifyMessage(cksum, ss); !ok {
|
|
return ErrBadSender
|
|
}
|
|
|
|
// we set this to indicate that the sender authenticated themselves;
|
|
d.auth = true
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Wrap data encryption key 'k' with the sender's PK and our ephemeral curve SK
|
|
//
|
|
// basically, we do a scalarmult: Ephemeral encryption/decryption SK x receiver PK
|
|
func (e *Encryptor) wrapKey(pk *PublicKey) (*pb.WrappedKey, error) {
|
|
rxPK := pk.ToCurve25519PK()
|
|
sekrit, err := curve25519.X25519(e.encSK, rxPK)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("wrap: %w", err)
|
|
}
|
|
|
|
var shasum [sha256.Size]byte
|
|
|
|
rbuf := randBuf(_RxNonceSize)
|
|
|
|
h := sha256.New()
|
|
h.Write(e.Salt)
|
|
h.Write(rbuf[:])
|
|
h.Sum(shasum[:0])
|
|
|
|
out := make([]byte, _AesKeySize+_RxNonceSize)
|
|
buf := expand(out[:], sekrit, shasum[:], []byte(_WrapReceiver))
|
|
|
|
kek, nonce := buf[:_AesKeySize], buf[_AesKeySize:]
|
|
|
|
aes, err := aes.NewCipher(kek)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("wrap: %w", err)
|
|
}
|
|
|
|
ae, err := cipher.NewGCM(aes)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("wrap: %w", err)
|
|
}
|
|
|
|
ekey := make([]byte, ae.Overhead()+len(e.key))
|
|
w := &pb.WrappedKey{
|
|
DKey: ae.Seal(ekey[:0], nonce, e.key, pk.Pk),
|
|
Nonce: rbuf,
|
|
}
|
|
|
|
return w, nil
|
|
}
|
|
|
|
// Unwrap a wrapped key using the receivers Ed25519 secret key 'sk' and
|
|
// senders ephemeral PublicKey
|
|
func (d *Decryptor) unwrapKey(w *pb.WrappedKey, sk *PrivateKey) ([]byte, error) {
|
|
ourSK := sk.ToCurve25519SK()
|
|
sekrit, err := curve25519.X25519(ourSK, d.Pk)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unwrap: %w", err)
|
|
}
|
|
|
|
var shasum [sha256.Size]byte
|
|
|
|
h := sha256.New()
|
|
h.Write(d.Salt)
|
|
h.Write(w.Nonce)
|
|
h.Sum(shasum[:0])
|
|
|
|
out := make([]byte, _AesKeySize+_RxNonceSize)
|
|
buf := expand(out[:], sekrit, shasum[:], []byte(_WrapReceiver))
|
|
|
|
kek, nonce := buf[:_AesKeySize], buf[_AesKeySize:]
|
|
|
|
aes, err := aes.NewCipher(kek)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("wrap: %w", err)
|
|
}
|
|
|
|
ae, err := cipher.NewGCM(aes)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("wrap: %w", err)
|
|
}
|
|
|
|
want := _AesKeySize + ae.Overhead()
|
|
if len(w.DKey) != want {
|
|
return nil, fmt.Errorf("unwrap: incorrect decrypt bytes (need %d, saw %d)", want, len(w.DKey))
|
|
}
|
|
|
|
pk := sk.PublicKey()
|
|
dkey := make([]byte, _AesKeySize) // decrypted data decryption key
|
|
|
|
// we indicate incorrect receiver SK by returning a nil key
|
|
dkey, err = ae.Open(dkey[:0], nonce, w.DKey, pk.Pk)
|
|
if err != nil {
|
|
return nil, nil
|
|
}
|
|
|
|
// we have successfully found the correct recipient
|
|
return dkey, nil
|
|
}
|
|
|
|
// Write _all_ bytes of buffer 'buf'
|
|
func fullwrite(buf []byte, wr io.Writer) error {
|
|
n := len(buf)
|
|
|
|
for n > 0 {
|
|
m, err := wr.Write(buf)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
n -= m
|
|
buf = buf[m:]
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// generate a KEK from a shared DH key and a Pub Key
|
|
func expand(out []byte, shared, salt, ad []byte) []byte {
|
|
h := hkdf.New(sha512.New, shared, salt, ad)
|
|
_, err := io.ReadFull(h, out)
|
|
if err != nil {
|
|
panic(fmt.Sprintf("hkdf: failed to generate %d bytes: %s", len(out), err))
|
|
}
|
|
return out
|
|
}
|
|
|
|
func newSender() (sk, pk []byte, err error) {
|
|
var csk [32]byte
|
|
|
|
randRead(csk[:])
|
|
clamp(csk[:])
|
|
pk, err = curve25519.X25519(csk[:], curve25519.Basepoint)
|
|
sk = csk[:]
|
|
return
|
|
}
|
|
|
|
// do sha256 on a list of byte slices
|
|
func sha256Slices(v ...[]byte) []byte {
|
|
h := sha256.New()
|
|
for _, x := range v {
|
|
h.Write(x)
|
|
}
|
|
return h.Sum(nil)[:]
|
|
}
|
|
|
|
var _debug int = 0
|
|
|
|
// Enable debugging of this module;
|
|
// level > 0 elicits debug messages on os.Stderr
|
|
func Debug(level int) {
|
|
_debug = level
|
|
}
|
|
|
|
func debug(s string, v ...interface{}) {
|
|
if _debug <= 0 {
|
|
return
|
|
}
|
|
|
|
z := fmt.Sprintf(s, v...)
|
|
if n := len(z); z[n-1] != '\n' {
|
|
z += "\n"
|
|
}
|
|
os.Stderr.WriteString(z)
|
|
os.Stderr.Sync()
|
|
}
|
|
|
|
// EOF
|