// encrypt.go -- Ed25519 based encrypt/decrypt // // (c) 2016 Sudhi Herle // // Licensing Terms: GPLv2 // // If you need a commercial license for this work, please contact // the author. // // This software does not come with any express or implied // warranty; it is provided "as is". No claim is made to its // suitability for any purpose. // // Implementation Notes for Encryption/Decryption: // // Header: has 3 parts: // - Fixed sized header // - Variable sized protobuf encoded header // - SHA256 sum of both above. // // Fixed size header: // - Magic: 7 bytes // - Version: 1 byte // - VLen: 4 byte // // Variable Length Segment: // - Protobuf encoded, per-recipient wrapped keys // - Shasum: 32 bytes (SHA256 of full header) // // The variable length segment consists of one or more // recipients, each with their wrapped keys. This is encoded as // a protobuf message. This protobuf encoded message immediately // follows the fixed length header. // // The input data is encrypted with an expanded random 32-byte key: // - Prefix_string = "Encrypt Nonce" // - datakey = SHA256(Prefix_string || header_checksum || random_key) // - The header checksum is mixed in the above process to ensure we // catch any malicious modification of the header. // // The input data is broken up into "chunks"; each no larger than // maxChunkSize. The default block size is "chunkSize". Each block // is AEAD encrypted: // AEAD nonce = header.salt || block# || block-size // // The encrypted block (includes the AEAD tag) length is written // as a big-endian 4-byte prefix. The high-order bit of this length // field is set for the last-block (denoting EOF). // // The encrypted blocks use an opinionated nonce length of 32 (_AEADNonceLen). package sign import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/ed25519" "crypto/sha256" "crypto/sha512" "crypto/subtle" "encoding/binary" "fmt" "golang.org/x/crypto/curve25519" "golang.org/x/crypto/hkdf" "io" "github.com/opencoff/sigtool/internal/pb" ) // Encryption chunk size = 4MB const ( chunkSize uint32 = 4 * 1048576 maxChunkSize uint32 = 1 << 30 _EOF uint32 = 1 << 31 _Magic = "SigTool" _MagicLen = len(_Magic) _SigtoolVersion = 2 _AEADNonceLen = 32 _FixedHdrLen = _MagicLen + 1 + 4 _WrapReceiverNonce = "Receiver Key Nonce" _WrapSenderNonce = "Sender Sig Nonce" _EncryptNonce = "Encrypt Nonce" ) // Encryptor holds the encryption context type Encryptor struct { pb.Header key []byte // file encryption key ae cipher.AEAD // ephemeral key encSK []byte started bool hdrsum []byte buf []byte stream bool } // Create a new Encryption context for encrypting blocks of size 'blksize'. // If 'sk' is not nil, authenticate the sender to each receiver. func NewEncryptor(sk *PrivateKey, blksize uint64) (*Encryptor, error) { var blksz uint32 switch { case blksize == 0: blksz = chunkSize case blksize > uint64(maxChunkSize): blksz = maxChunkSize default: blksz = uint32(blksize) } // generate ephemeral Curve25519 keys esk, epk, err := newSender() if err != nil { return nil, fmt.Errorf("encrypt: %w", err) } key := make([]byte, 32) salt := make([]byte, _AEADNonceLen) randRead(key) randRead(salt) wSig, err := wrapSenderSig(sk, key, salt) if err != nil { return nil, fmt.Errorf("encrypt: %w", err) } e := &Encryptor{ Header: pb.Header{ ChunkSize: blksz, Salt: salt, Pk: epk, SenderSign: wSig, }, key: key, encSK: esk, } return e, nil } // Add a new recipient to this encryption context. func (e *Encryptor) AddRecipient(pk *PublicKey) error { if e.started { return ErrEncStarted } w, err := e.wrapKey(pk) if err == nil { e.Keys = append(e.Keys, w) } return err } // Encrypt the input stream 'rd' and write encrypted stream to 'wr' func (e *Encryptor) Encrypt(rd io.Reader, wr io.WriteCloser) error { if e.stream { return ErrEncIsStream } if !e.started { err := e.start(wr) if err != nil { return err } } buf := make([]byte, e.ChunkSize) var i uint32 var eof bool for !eof { n, err := io.ReadAtLeast(rd, buf, int(e.ChunkSize)) if err != nil { switch err { case io.EOF, io.ErrClosedPipe, io.ErrUnexpectedEOF: eof = true default: return fmt.Errorf("encrypt: I/O read error: %w", err) } } if n >= 0 { err = e.encrypt(buf[:n], wr, i, eof) if err != nil { return err } i++ } } return wr.Close() } // Begin the encryption process by writing the header func (e *Encryptor) start(wr io.Writer) error { varSize := e.Size() buffer := make([]byte, _FixedHdrLen+varSize+sha256.Size) fixHdr := buffer[:_FixedHdrLen] varHdr := buffer[_FixedHdrLen:] sumHdr := varHdr[varSize:] // Now assemble the fixed header copy(fixHdr[:], []byte(_Magic)) fixHdr[_MagicLen] = _SigtoolVersion binary.BigEndian.PutUint32(fixHdr[_MagicLen+1:], uint32(varSize)) // Now marshal the variable portion _, err := e.MarshalTo(varHdr[:varSize]) if err != nil { return fmt.Errorf("encrypt: can't marshal header: %w", err) } // Now calculate checksum of everything h := sha256.New() h.Write(buffer[:_FixedHdrLen+varSize]) h.Sum(sumHdr[:0]) // Finally write it out err = fullwrite(buffer, wr) if err != nil { return fmt.Errorf("encrypt: %w", err) } // we mix the header checksum to create the encryption key h = sha256.New() h.Write([]byte(_EncryptNonce)) h.Write(e.key) h.Write(sumHdr) key := h.Sum(nil) aes, err := aes.NewCipher(key) if err != nil { return fmt.Errorf("encrypt: %w", err) } ae, err := cipher.NewGCMWithNonceSize(aes, _AEADNonceLen) if err != nil { return fmt.Errorf("encrypt: %w", err) } e.buf = make([]byte, e.ChunkSize+4+uint32(ae.Overhead())) e.ae = ae e.started = true return nil } // encrypt exactly _one_ block of data // The nonce is constructed from the salt, block# and block-size. // This protects the output stream from re-ordering attacks and length // modification attacks. The encoded length & block number is used as // additional data in the AEAD construction. func (e *Encryptor) encrypt(buf []byte, wr io.Writer, i uint32, eof bool) error { var z uint32 = uint32(len(buf)) var nbuf [_AEADNonceLen]byte // mark last block if eof { z |= _EOF } b := e.buf[:8] binary.BigEndian.PutUint32(b[:4], z) binary.BigEndian.PutUint32(b[4:], i) nonce := makeNonceV2(nbuf[:], e.Salt, b) cbuf := e.buf[4:] c := e.ae.Seal(cbuf[:0], nonce, buf, b[:]) // total number of bytes written n := len(c) + 4 err := fullwrite(e.buf[:n], wr) if err != nil { return fmt.Errorf("encrypt: %w", err) } return nil } // Decryptor holds the decryption context type Decryptor struct { pb.Header ae cipher.AEAD rd io.Reader buf []byte hdrsum []byte // flag set to true if sender signed the key auth bool // Decrypted key key []byte eof bool stream bool } // Create a new decryption context and if 'pk' is given, check that it matches // the sender func NewDecryptor(rd io.Reader) (*Decryptor, error) { var b [_FixedHdrLen]byte _, err := io.ReadFull(rd, b[:]) if err != nil { return nil, fmt.Errorf("decrypt: err while reading header: %w", err) } if bytes.Compare(b[:_MagicLen], []byte(_Magic)) != 0 { return nil, ErrNotSigTool } // Version check if b[_MagicLen] != _SigtoolVersion { return nil, fmt.Errorf("decrypt: Unsupported version %d; this tool only supports v%d", b[_MagicLen], _SigtoolVersion) } varSize := binary.BigEndian.Uint32(b[_MagicLen+1:]) // sanity check on variable segment length if varSize > 1048576 { return nil, ErrHeaderTooBig } if varSize < 32 { return nil, ErrHeaderTooSmall } // SHA256 is the trailer part of the file-header varBuf := make([]byte, varSize+sha256.Size) _, err = io.ReadFull(rd, varBuf) if err != nil { return nil, fmt.Errorf("decrypt: error while reading header: %w", err) } verify := varBuf[varSize:] h := sha256.New() h.Write(b[:]) h.Write(varBuf[:varSize]) cksum := h.Sum(nil) if subtle.ConstantTimeCompare(verify, cksum[:]) == 0 { return nil, ErrBadHeader } d := &Decryptor{ rd: rd, hdrsum: cksum, } err = d.Unmarshal(varBuf[:varSize]) if err != nil { return nil, fmt.Errorf("decrypt: decode error: %w", err) } if d.ChunkSize == 0 || d.ChunkSize >= maxChunkSize { return nil, fmt.Errorf("decrypt: invalid chunkSize %d", d.ChunkSize) } if len(d.Salt) != _AEADNonceLen { return nil, fmt.Errorf("decrypt: invalid nonce length %d", len(d.Salt)) } if len(d.Keys) == 0 { return nil, ErrNoWrappedKeys } // sanity check on the wrapped keys for i, w := range d.Keys { if len(w.DKey) <= 32 { return nil, fmt.Errorf("decrypt: wrapped key %d: wrong-size encrypted key", i) } } return d, nil } // Use Private Key 'sk' to decrypt the encrypted keys in the header and optionally validate // the sender func (d *Decryptor) SetPrivateKey(sk *PrivateKey, senderPk *PublicKey) error { var err error var key []byte for i, w := range d.Keys { key, err = d.unwrapKey(w, sk) if err != nil { return fmt.Errorf("decrypt: can't unwrap key %d: %w", i, err) } if key != nil { goto havekey } } return ErrBadKey havekey: if err := d.verifySender(key, sk, senderPk); err != nil { return fmt.Errorf("decrypt: %w", err) } d.key = key // we mix the header checksum into the key h := sha256.New() h.Write([]byte(_EncryptNonce)) h.Write(d.key) h.Write(d.hdrsum) key = h.Sum(nil) aes, err := aes.NewCipher(key) if err != nil { return fmt.Errorf("decrypt: %w", err) } d.ae, err = cipher.NewGCMWithNonceSize(aes, _AEADNonceLen) if err != nil { return fmt.Errorf("decrypt: %w", err) } d.buf = make([]byte, int(d.ChunkSize)+d.ae.Overhead()) return nil } // AuthenticatedSender returns true if the sender authenticated themselves // (the data-encryption key is signed). func (d *Decryptor) AuthenticatedSender() bool { return d.auth } // Decrypt the file and write to 'wr' func (d *Decryptor) Decrypt(wr io.Writer) error { if d.key == nil { return ErrNoKey } if d.stream { return ErrDecStarted } if d.eof { return io.EOF } var i uint32 for i = 0; ; i++ { c, eof, err := d.decrypt(i) if err != nil { return err } if len(c) > 0 { err = fullwrite(c, wr) if err != nil { return fmt.Errorf("decrypt: %w", err) } } if eof { d.eof = true return nil } } } // Decrypt exactly one chunk of data func (d *Decryptor) decrypt(i uint32) ([]byte, bool, error) { var b [8]byte var nonceb [32]byte var ovh uint32 = uint32(d.ae.Overhead()) var p []byte n, err := io.ReadFull(d.rd, b[:4]) if err != nil || n == 0 { return nil, false, fmt.Errorf("decrypt: premature EOF while reading header block %d", i) } m := binary.BigEndian.Uint32(b[:4]) eof := (m & _EOF) > 0 m &= (_EOF - 1) // Sanity check - in case of corrupt header switch { case m > uint32(d.ChunkSize): return nil, false, fmt.Errorf("decrypt: chunksize is too large (%d)", m) case m == 0: if !eof { return nil, false, fmt.Errorf("decrypt: block %d: zero-sized chunk without EOF", i) } return p, eof, nil default: } binary.BigEndian.PutUint32(b[4:], i) nonce := makeNonceV2(nonceb[:], d.Salt, b[:]) z := m + ovh n, err = io.ReadFull(d.rd, d.buf[:z]) if err != nil { return nil, false, fmt.Errorf("decrypt: premature EOF while reading block %d: %w", i, err) } p, err = d.ae.Open(d.buf[:0], nonce, d.buf[:n], b[:]) if err != nil { return nil, false, fmt.Errorf("decrypt: can't decrypt chunk %d: %w", i, err) } return p[:m], eof, nil } // Wrap sender's signature of the encryption key // if sender has provided their identity to authenticate, we sign the data-enc key // and encrypt the signature. At no point will we send the sender's identity. func wrapSenderSig(sk *PrivateKey, key, salt []byte) ([]byte, error) { var zero [ed25519.SignatureSize]byte var sig []byte switch { case sk == nil: sig = zero[:] default: xsig, err := sk.SignMessage(key, "") if err != nil { return nil, fmt.Errorf("wrap: can't sign: %w", err) } sig = xsig.Sig } aes, err := aes.NewCipher(key) if err != nil { return nil, fmt.Errorf("wrap: %w", err) } ae, err := cipher.NewGCM(aes) if err != nil { return nil, fmt.Errorf("wrap: %w", err) } tagsize := ae.Overhead() nonceSize := ae.NonceSize() nonce := sha256Slices([]byte(_WrapSenderNonce), salt)[:nonceSize] esig := make([]byte, tagsize+len(sig)) return ae.Seal(esig[:0], nonce, sig, nil), nil } // unwrap sender's signature using 'key' and extract the signature // Optionally, verify the signature using the sender's PK (if provided). func (d *Decryptor) verifySender(key []byte, sk *PrivateKey, senderPK *PublicKey) error { aes, err := aes.NewCipher(key) if err != nil { return fmt.Errorf("unwrap: %w", err) } ae, err := cipher.NewGCM(aes) if err != nil { return fmt.Errorf("unwrap: %w", err) } nonceSize := ae.NonceSize() nonce := sha256Slices([]byte(_WrapSenderNonce), d.Salt)[:nonceSize] sig := make([]byte, ed25519.SignatureSize) sig, err = ae.Open(sig[:0], nonce, d.SenderSign, nil) if err != nil { return fmt.Errorf("unwrap: can't open sender info: %w", err) } var zero [ed25519.SignatureSize]byte // Did the sender actually sign anything? if subtle.ConstantTimeCompare(zero[:], sig) == 0 { // we set this to indicate that the sender authenticated themselves; d.auth = true if senderPK != nil { ss := &Signature{ Sig: sig, } if ok := senderPK.VerifyMessage(key, ss); !ok { return fmt.Errorf("unwrap: sender verification failed") } } } return nil } // Wrap data encryption key 'k' with the sender's PK and our ephemeral curve SK // basically, we do a scalarmult: Ephemeral encryption/decryption SK x receiver PK func (e *Encryptor) wrapKey(pk *PublicKey) (*pb.WrappedKey, error) { rxPK := pk.ToCurve25519PK() dkek, err := curve25519.X25519(e.encSK, rxPK) if err != nil { return nil, fmt.Errorf("wrap: %w", err) } aes, err := aes.NewCipher(dkek) if err != nil { return nil, fmt.Errorf("wrap: %w", err) } ae, err := cipher.NewGCM(aes) if err != nil { return nil, fmt.Errorf("wrap: %w", err) } tagsize := ae.Overhead() nonceSize := ae.NonceSize() nonceR := sha256Slices([]byte(_WrapReceiverNonce), e.Salt)[:nonceSize] ekey := make([]byte, tagsize+len(e.key)) w := &pb.WrappedKey{ DKey: ae.Seal(ekey[:0], nonceR, e.key, pk.Pk), } return w, nil } // Unwrap a wrapped key using the receivers Ed25519 secret key 'sk' and // senders ephemeral PublicKey func (d *Decryptor) unwrapKey(w *pb.WrappedKey, sk *PrivateKey) ([]byte, error) { ourSK := sk.ToCurve25519SK() dkek, err := curve25519.X25519(ourSK, d.Pk) if err != nil { return nil, fmt.Errorf("unwrap: %w", err) } aes, err := aes.NewCipher(dkek) if err != nil { return nil, fmt.Errorf("unwrap: %w", err) } ae, err := cipher.NewGCM(aes) if err != nil { return nil, fmt.Errorf("unwrap: %w", err) } // 32 == AES-256 key size want := 32 + ae.Overhead() if len(w.DKey) != want { return nil, fmt.Errorf("unwrap: incorrect decrypt bytes (need %d, saw %d)", want, len(w.DKey)) } nonceSize := ae.NonceSize() nonceR := sha256Slices([]byte(_WrapReceiverNonce), d.Salt)[:nonceSize] pk := sk.PublicKey() dkey := make([]byte, 32) // decrypted data decryption key // we indicate incorrect receiver SK by returning a nil key dkey, err = ae.Open(dkey[:0], nonceR, w.DKey, pk.Pk) if err != nil { return nil, nil } return dkey, nil } // Write _all_ bytes of buffer 'buf' func fullwrite(buf []byte, wr io.Writer) error { n := len(buf) for n > 0 { m, err := wr.Write(buf) if err != nil { return err } n -= m buf = buf[m:] } return nil } // make aead nonce from salt, chunk-size and block# // First 8 bytes are chunk-size and nonce (in 'ad') func makeNonceV2(dest []byte, salt []byte, ad []byte) []byte { n := len(ad) copy(dest, ad) copy(dest[n:], salt) return dest } // make aead nonce from salt, chunk-size and block# for v1 // This is here for historical documentation purposes func makeNonceV1(dest []byte, salt []byte, ad []byte) []byte { h := sha256.New() h.Write(salt) h.Write(ad) return h.Sum(dest[:0]) } // generate a KEK from a shared DH key and a Pub Key func expand(shared, pk []byte) ([]byte, error) { kek := make([]byte, 32) h := hkdf.New(sha512.New, shared, pk, nil) _, err := io.ReadFull(h, kek) return kek, err } func newSender() (sk, pk []byte, err error) { var csk [32]byte randRead(csk[:]) clamp(csk[:]) pk, err = curve25519.X25519(csk[:], curve25519.Basepoint) sk = csk[:] return } // do sha256 on a list of byte slices func sha256Slices(v ...[]byte) []byte { h := sha256.New() for _, x := range v { h.Write(x) } return h.Sum(nil)[:] } // EOF