v2 of sigtool with some changes:
- aead nonce construction is efficient (replace last 8 bytes of salt with encoded block# and chunk-size - increase aead nonce size to 32 bytes - refactor errors into a separate file - update "build" to latest version - updated README.
This commit is contained in:
parent
3fa0ce0c9c
commit
945046a815
7 changed files with 325 additions and 269 deletions
72
README.md
72
README.md
|
@ -7,26 +7,26 @@
|
|||
`sigtool` is an opinionated tool to generate keys, sign, verify, encrypt &
|
||||
decrypt files using Ed25519 signature scheme. In many ways, it is like
|
||||
like OpenBSD's [signify][1] -- except written in Golang and definitely
|
||||
easier to use.
|
||||
easier to use. It can use SSH ed25519 public and private keys.
|
||||
|
||||
It can sign and verify very large files - it prehashes the files
|
||||
with SHA-512 and then signs the SHA-512 checksum. The keys and signatures
|
||||
are YAML files and so, human readable.
|
||||
are human readable YAML files.
|
||||
|
||||
It can encrypt files for multiple recipients - each of whom is identified
|
||||
by their Ed25519 public key. The encryption by default generates ephmeral
|
||||
by their Ed25519 public key. The encryption generates ephmeral
|
||||
Curve25519 keys and creates pair-wise shared secret for each recipient of
|
||||
the encrypted file. The caller can optionally use a specific secret key
|
||||
the encrypted file. The caller can optionally use a specific private key
|
||||
during the encryption process - this has the benefit of also authenticating
|
||||
the sender (and the receiver can verify the sender if they possess the
|
||||
corresponding public key).
|
||||
corresponding sender's public key).
|
||||
|
||||
The sign, verify, encrypt, decrypt operations can use OpenSSH Ed25519 keys
|
||||
*or* the keys generated by sigtool. This means, you can send encrypted
|
||||
files to any recipient identified by their comment in `~/.ssh/authorized_keys`.
|
||||
|
||||
## How do I build it?
|
||||
With Go 1.5 and later:
|
||||
With Go 1.13 and later:
|
||||
|
||||
git clone https://github.com/opencoff/sigtool
|
||||
cd sigtool
|
||||
|
@ -144,15 +144,21 @@ a random 32-byte AES-256 key. This key is mixed in with the header checksum
|
|||
as a safeguard to protect the header against accidental or malicious corruption.
|
||||
The input is broken into chunks and each chunk is individually AEAD encrypted.
|
||||
The default chunk size is 4MB (4 * 1048576 bytes). Each chunk generates
|
||||
its own nonce from a global salt. The nonce is calculated as a SHA256 hash of
|
||||
the salt, the chunk length and the block number.
|
||||
its own nonce from a global salt. The nonce is calculated as follows:
|
||||
|
||||
### What is the public-key cryptography?
|
||||
- v1: SHA256 of the salt, the chunk length and the block number.
|
||||
- v2: Last 8 bytes of a 32-byte salt is the big-endian encoding of
|
||||
the chunk-length and block number
|
||||
|
||||
The last block has its most-signficant-bit set to 1 to denote EOF. Thus, the
|
||||
maximum chunk size is set to 1GB.
|
||||
|
||||
### What is the public-key cryptography in sigtool?
|
||||
`sigtool` uses ephemeral Curve25519 keys to generate shared secrets
|
||||
between pairs of sender & one or more recipients. This pairwise shared
|
||||
secret is used as a key-encryption-key (KEK) to encrypt the
|
||||
secret is used as a key-encryption-key (KEK) to wrap the
|
||||
data-encryption key in AEAD mode. Thus, each recipient has their own
|
||||
individual encrypted key blob.
|
||||
individual encrypted key blob - that **only** they can decrypt.
|
||||
|
||||
If the sender authenticates the encryption by providing their secret
|
||||
key, the data-encryption key is signed via Ed25519 and the signature
|
||||
|
@ -161,7 +167,7 @@ header. If the sender opts to not authenticate, a "signature" of all
|
|||
zeroes is encrypted instead.
|
||||
|
||||
The Ed25519 keys generated by `sigtool` or OpenSSH are transformed to their
|
||||
corresponding Curve25519 points in order to generate the shared secret.
|
||||
corresponding Curve25519 points in order to generate the pair-wise shared secret.
|
||||
This elliptic co-ordinate transform follows [FiloSottile's writeup][2].
|
||||
|
||||
### Format of the Encrypted File
|
||||
|
@ -205,19 +211,33 @@ chunk is encoded the same way:
|
|||
|
||||
```C
|
||||
4 byte chunk length (big endian encoding)
|
||||
encrypted chunk data
|
||||
AEAD encrypted chunk data
|
||||
AEAD tag
|
||||
```
|
||||
|
||||
The chunk length does _not_ include the AEAD tag length; it is implicitly
|
||||
computed.
|
||||
|
||||
The chunk data and AEAD tag are treated as an atomic unit for AEAD
|
||||
computed. The chunk data and AEAD tag are treated as an atomic unit for AEAD
|
||||
decryption.
|
||||
|
||||
### How is the private key protected?
|
||||
The Ed25519 private key is encrypted in AES-GCM-256 mode using a key
|
||||
derived from the user's pass-phrase.
|
||||
derived from the user's pass-phrase. The user pass phrase is expanded via
|
||||
SHA256; this expanded pass phrase is fed to `scrypt()` to
|
||||
generate a key-encryption-key. In pseudo code, this operation looks
|
||||
like below:
|
||||
|
||||
passphrase = get_user_passphrase()
|
||||
expanded = SHA512(passphrase)
|
||||
salt = randombytes(32)
|
||||
key = Scrypt(expanded, salt, N, r, p)
|
||||
esk = AES256_GCM(ed25519_private_key, key)
|
||||
|
||||
Where, ```N```, ```r```, ```p``` are Scrypt parameters. In our
|
||||
implementation:
|
||||
|
||||
N = 2^19 (1 << 19)
|
||||
r = 8
|
||||
p = 1
|
||||
|
||||
|
||||
## Understanding the Code
|
||||
|
@ -263,24 +283,6 @@ And, a serialized Ed25519 private key looks like so:
|
|||
p: 1
|
||||
```
|
||||
|
||||
The Ed25519 private key is encrypted using AES-256-GCM AEAD mode;
|
||||
the encryption key is derived from the user supplied passphrase
|
||||
using scrypt KDF. A user supplied passphrase is first expanded
|
||||
using SHA-512 before being used in ```scrypt()```. In pseudo code,
|
||||
this operation looks like below:
|
||||
|
||||
passphrase = get_user_passphrase()
|
||||
hpass = SHA512(passphrase)
|
||||
salt = randombytes(32)
|
||||
key = Scrypt(hpass, salt, N, r, p)
|
||||
esk = AES256_GCM(ed25519_private_key, key)
|
||||
|
||||
Where, ```N```, ```r```, ```p``` are Scrypt parameters. In our
|
||||
implementation:
|
||||
|
||||
N = 2^19 (1 << 19)
|
||||
r = 8
|
||||
p = 1
|
||||
|
||||
### Ed25519 Signature
|
||||
A generated signature looks like below after serialization:
|
||||
|
|
37
build
37
build
|
@ -27,14 +27,12 @@ PWD=`pwd`
|
|||
|
||||
Static=0
|
||||
Dryrun=0
|
||||
Prodver=0.1
|
||||
Prodver=""
|
||||
Verbose=0
|
||||
|
||||
hostos=$(go env GOHOSTOS) || exit 1
|
||||
hostcpu=$(go env GOHOSTARCH) || exit 1
|
||||
|
||||
[ -f ./version ] && Prodver=$(cat ./version)
|
||||
|
||||
die() {
|
||||
echo "$Z: $@" 1>&2
|
||||
exit 0
|
||||
|
@ -102,7 +100,8 @@ And, PROGS is one or more go programs.
|
|||
|
||||
With no arguments, $0 builds: $Progs (source in ./src/)
|
||||
|
||||
If ./version is present, its content are used as version number for the binary.
|
||||
The repository's latest tag is used as the default version of the software being
|
||||
built.
|
||||
|
||||
Options:
|
||||
-h, --help Show this help message and quit
|
||||
|
@ -153,6 +152,7 @@ done
|
|||
Tool=
|
||||
doinit=0
|
||||
args=
|
||||
Printarch=0
|
||||
|
||||
#set -x
|
||||
ac_prev=
|
||||
|
@ -214,6 +214,10 @@ do
|
|||
set -x
|
||||
;;
|
||||
|
||||
--print-arch)
|
||||
Printarch=1
|
||||
;;
|
||||
|
||||
*) # first non option terminates option processing.
|
||||
# we gather all remaining args and bundle them up.
|
||||
args="$args $ac_option"
|
||||
|
@ -228,7 +232,7 @@ done
|
|||
[ $Dryrun -gt 0 ] && e=echo
|
||||
|
||||
# let every error abort
|
||||
#set -e
|
||||
set -e
|
||||
|
||||
# This fragment can't be in a function - since it exports several vars
|
||||
if [ -n "$Arch" ]; then
|
||||
|
@ -274,6 +278,12 @@ else
|
|||
fi
|
||||
fi
|
||||
|
||||
if [ $Printarch -gt 0 ]; then
|
||||
echo "$hostos-$hostcpu"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
|
||||
# This is where build outputs go
|
||||
Bindir=$PWD/bin/$cross
|
||||
Hostbindir=$PWD/bin/$hostos-$hostcpu
|
||||
|
@ -290,21 +300,28 @@ if [ -d "./.hg" ]; then
|
|||
else
|
||||
rev="hg:${brev}"
|
||||
fi
|
||||
if [ -z "$Prodver" ]; then
|
||||
Prodver=$(hg log -r "branch(stable) and tag()" -T "{tags}\n" | tail -1)
|
||||
fi
|
||||
elif [ -d "./.git" ]; then
|
||||
xrev=$(git describe --always --dirty --long --abbrev=12) || exit 1
|
||||
rev="git:$xrev"
|
||||
if [ -z "$Prodver" ]; then
|
||||
Prodver=$(git tag --list | tail -1)
|
||||
fi
|
||||
else
|
||||
rev="UNKNOWN-VER"
|
||||
echo "$0: Can't find version info" 1>&2
|
||||
fi
|
||||
|
||||
|
||||
# Do Protobufs if needed
|
||||
if [ -n "$Protobufs" ]; then
|
||||
slick=$Hostbindir/protoc-gen-gogoslick
|
||||
slicksrc=github.com/gogo/protobuf/protoc-gen-gogoslick
|
||||
pc=$(type -p protoc)
|
||||
|
||||
[ -z "$pc" ] && die "Please install protobuf-tools .."
|
||||
[ -z "$pc" ] && die "Need 'protoc' for building .."
|
||||
|
||||
slick=$(hosttool protoc-gen-gogoslick $Hostbindir $slicksrc) || exit 1
|
||||
#if [ ! -f $slick ]; then
|
||||
|
@ -312,17 +329,15 @@ if [ -n "$Protobufs" ]; then
|
|||
# $e go build -o $slick github.com/gogo/protobuf/protoc-gen-gogoslick || exit 1
|
||||
#i
|
||||
|
||||
PATH=$Hostbindir:$PATH
|
||||
export PATH
|
||||
export PATH=$PATH:$Hostbindir
|
||||
|
||||
for f in $Protobufs; do
|
||||
dn=$(dirname $f)
|
||||
bn=$(basename $f .proto)
|
||||
of=$dn/${bn}.pb.go
|
||||
if [ $f -nt $of ]; then
|
||||
echo "gogoslick: $f -> $of ..."
|
||||
echo "Running $pc .."
|
||||
$e $pc --gogoslick_out=. $f || exit 1
|
||||
$e gofmt -w $of
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
@ -354,7 +369,7 @@ case $Tool in
|
|||
all="$@"
|
||||
fi
|
||||
|
||||
echo "Building $msg $Prodver ($rev) for $cross .."
|
||||
echo "Building $Prodver ($rev), $cross $msg .."
|
||||
|
||||
for p in $all; do
|
||||
if echo $p | grep -q ':' ; then
|
||||
|
|
411
sign/encrypt.go
411
sign/encrypt.go
|
@ -42,7 +42,7 @@
|
|||
// The input data is broken up into "chunks"; each no larger than
|
||||
// maxChunkSize. The default block size is "chunkSize". Each block
|
||||
// is AEAD encrypted:
|
||||
// AEAD nonce = SHA256(header.salt || block# || block-size)
|
||||
// AEAD nonce = header.salt || block# || block-size
|
||||
//
|
||||
// The encrypted block (includes the AEAD tag) length is written
|
||||
// as a big-endian 4-byte prefix. The high-order bit of this length
|
||||
|
@ -72,12 +72,13 @@ import (
|
|||
// Encryption chunk size = 4MB
|
||||
const (
|
||||
chunkSize uint32 = 4 * 1048576
|
||||
maxChunkSize uint32 = 16 * 1048576
|
||||
maxChunkSize uint32 = 1 << 30
|
||||
_EOF uint32 = 1 << 31
|
||||
|
||||
_Magic = "SigTool"
|
||||
_MagicLen = len(_Magic)
|
||||
_AEADNonceLen = 16
|
||||
_SigtoolVersion = 2
|
||||
_AEADNonceLen = 32
|
||||
_FixedHdrLen = _MagicLen + 1 + 4
|
||||
|
||||
_WrapReceiverNonce = "Receiver Key Nonce"
|
||||
|
@ -119,7 +120,7 @@ func NewEncryptor(sk *PrivateKey, blksize uint64) (*Encryptor, error) {
|
|||
// generate ephemeral Curve25519 keys
|
||||
esk, epk, err := newSender()
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("encrypt: %s", err)
|
||||
return nil, fmt.Errorf("encrypt: %w", err)
|
||||
}
|
||||
|
||||
key := make([]byte, 32)
|
||||
|
@ -134,7 +135,7 @@ func NewEncryptor(sk *PrivateKey, blksize uint64) (*Encryptor, error) {
|
|||
if sk != nil {
|
||||
sig, err := sk.SignMessage(key, "")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("encrypt: can't sign: %s", err)
|
||||
return nil, fmt.Errorf("encrypt: can't sign: %w", err)
|
||||
}
|
||||
|
||||
senderSig = sig.Sig
|
||||
|
@ -145,7 +146,7 @@ func NewEncryptor(sk *PrivateKey, blksize uint64) (*Encryptor, error) {
|
|||
|
||||
wSig, err := wrapSenderSig(senderSig, key, salt)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("encrypt: %s", err)
|
||||
return nil, fmt.Errorf("encrypt: %w", err)
|
||||
}
|
||||
|
||||
e := &Encryptor{
|
||||
|
@ -166,7 +167,7 @@ func NewEncryptor(sk *PrivateKey, blksize uint64) (*Encryptor, error) {
|
|||
// Add a new recipient to this encryption context.
|
||||
func (e *Encryptor) AddRecipient(pk *PublicKey) error {
|
||||
if e.started {
|
||||
return fmt.Errorf("encrypt: can't add new recipient after encryption has started")
|
||||
return ErrEncStarted
|
||||
}
|
||||
|
||||
w, err := e.wrapKey(pk)
|
||||
|
@ -180,7 +181,7 @@ func (e *Encryptor) AddRecipient(pk *PublicKey) error {
|
|||
// Encrypt the input stream 'rd' and write encrypted stream to 'wr'
|
||||
func (e *Encryptor) Encrypt(rd io.Reader, wr io.WriteCloser) error {
|
||||
if e.stream {
|
||||
return fmt.Errorf("encrypt: can't use Encrypt() after using streaming I/O")
|
||||
return ErrEncIsStream
|
||||
}
|
||||
|
||||
if !e.started {
|
||||
|
@ -201,7 +202,7 @@ func (e *Encryptor) Encrypt(rd io.Reader, wr io.WriteCloser) error {
|
|||
case io.EOF, io.ErrClosedPipe, io.ErrUnexpectedEOF:
|
||||
eof = true
|
||||
default:
|
||||
return fmt.Errorf("encrypt: I/O read error: %s", err)
|
||||
return fmt.Errorf("encrypt: I/O read error: %w", err)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -229,13 +230,13 @@ func (e *Encryptor) start(wr io.Writer) error {
|
|||
|
||||
// Now assemble the fixed header
|
||||
copy(fixHdr[:], []byte(_Magic))
|
||||
fixHdr[_MagicLen] = 1 // version #
|
||||
fixHdr[_MagicLen] = _SigtoolVersion
|
||||
binary.BigEndian.PutUint32(fixHdr[_MagicLen+1:], uint32(varSize))
|
||||
|
||||
// Now marshal the variable portion
|
||||
_, err := e.MarshalTo(varHdr[:varSize])
|
||||
if err != nil {
|
||||
return fmt.Errorf("encrypt: can't marshal header: %s", err)
|
||||
return fmt.Errorf("encrypt: can't marshal header: %w", err)
|
||||
}
|
||||
|
||||
// Now calculate checksum of everything
|
||||
|
@ -246,7 +247,7 @@ func (e *Encryptor) start(wr io.Writer) error {
|
|||
// Finally write it out
|
||||
err = fullwrite(buffer, wr)
|
||||
if err != nil {
|
||||
return fmt.Errorf("encrypt: %s", err)
|
||||
return fmt.Errorf("encrypt: %w", err)
|
||||
}
|
||||
|
||||
// we mix the header checksum to create the encryption key
|
||||
|
@ -258,12 +259,12 @@ func (e *Encryptor) start(wr io.Writer) error {
|
|||
|
||||
aes, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return fmt.Errorf("encrypt: %s", err)
|
||||
return fmt.Errorf("encrypt: %w", err)
|
||||
}
|
||||
|
||||
ae, err := cipher.NewGCMWithNonceSize(aes, _AEADNonceLen)
|
||||
if err != nil {
|
||||
return fmt.Errorf("encrypt: %s", err)
|
||||
return fmt.Errorf("encrypt: %w", err)
|
||||
}
|
||||
|
||||
e.buf = make([]byte, e.ChunkSize+4+uint32(ae.Overhead()))
|
||||
|
@ -273,30 +274,14 @@ func (e *Encryptor) start(wr io.Writer) error {
|
|||
return nil
|
||||
}
|
||||
|
||||
// Write _all_ bytes of buffer 'buf'
|
||||
func fullwrite(buf []byte, wr io.Writer) error {
|
||||
n := len(buf)
|
||||
|
||||
for n > 0 {
|
||||
m, err := wr.Write(buf)
|
||||
if err != nil {
|
||||
return fmt.Errorf("I/O error: %s", err)
|
||||
}
|
||||
|
||||
n -= m
|
||||
buf = buf[m:]
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// encrypt exactly _one_ block of data
|
||||
// The nonce for the block is: sha256(salt || chunkLen || block#)
|
||||
// This protects the output stream from re-ordering attacks and length
|
||||
// modification attacks. The encoded length & block number is used as
|
||||
// additional data in the AEAD construction.
|
||||
func (e *Encryptor) encrypt(buf []byte, wr io.Writer, i uint32, eof bool) error {
|
||||
var nonceb [32]byte
|
||||
var z uint32 = uint32(len(buf))
|
||||
var nbuf [_AEADNonceLen]byte
|
||||
|
||||
// mark last block
|
||||
if eof {
|
||||
|
@ -307,10 +292,7 @@ func (e *Encryptor) encrypt(buf []byte, wr io.Writer, i uint32, eof bool) error
|
|||
binary.BigEndian.PutUint32(b[:4], z)
|
||||
binary.BigEndian.PutUint32(b[4:], i)
|
||||
|
||||
h := sha256.New()
|
||||
h.Write(e.Salt)
|
||||
h.Write(b[:])
|
||||
nonce := h.Sum(nonceb[:0])[:e.ae.NonceSize()]
|
||||
nonce := makeNonceV2(nbuf[:], e.Salt, b)
|
||||
|
||||
cbuf := e.buf[4:]
|
||||
c := e.ae.Seal(cbuf[:0], nonce, buf, b[:])
|
||||
|
@ -319,7 +301,7 @@ func (e *Encryptor) encrypt(buf []byte, wr io.Writer, i uint32, eof bool) error
|
|||
n := len(c) + 4
|
||||
err := fullwrite(e.buf[:n], wr)
|
||||
if err != nil {
|
||||
return fmt.Errorf("encrypt: %s", err)
|
||||
return fmt.Errorf("encrypt: %w", err)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
@ -349,25 +331,27 @@ func NewDecryptor(rd io.Reader) (*Decryptor, error) {
|
|||
|
||||
_, err := io.ReadFull(rd, b[:])
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("decrypt: err while reading header: %s", err)
|
||||
return nil, fmt.Errorf("decrypt: err while reading header: %w", err)
|
||||
}
|
||||
|
||||
if bytes.Compare(b[:_MagicLen], []byte(_Magic)) != 0 {
|
||||
return nil, fmt.Errorf("decrypt: Not a sigtool encrypted file?")
|
||||
return nil, ErrNotSigTool
|
||||
}
|
||||
|
||||
if b[_MagicLen] != 1 {
|
||||
return nil, fmt.Errorf("decrypt: Unsupported version %d", b[_MagicLen])
|
||||
// Version check
|
||||
if b[_MagicLen] != _SigtoolVersion {
|
||||
return nil, fmt.Errorf("decrypt: Unsupported version %d; this tool only supports v%d",
|
||||
b[_MagicLen], _SigtoolVersion)
|
||||
}
|
||||
|
||||
varSize := binary.BigEndian.Uint32(b[_MagicLen+1:])
|
||||
|
||||
// sanity check on variable segment length
|
||||
if varSize > 1048576 {
|
||||
return nil, fmt.Errorf("decrypt: header too large (max 1048576)")
|
||||
return nil, ErrHeaderTooBig
|
||||
}
|
||||
if varSize < 32 {
|
||||
return nil, fmt.Errorf("decrypt: header too small (min 32)")
|
||||
return nil, ErrHeaderTooSmall
|
||||
}
|
||||
|
||||
// SHA256 is the trailer part of the file-header
|
||||
|
@ -375,7 +359,7 @@ func NewDecryptor(rd io.Reader) (*Decryptor, error) {
|
|||
|
||||
_, err = io.ReadFull(rd, varBuf)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("decrypt: err while reading header: %s", err)
|
||||
return nil, fmt.Errorf("decrypt: error while reading header: %w", err)
|
||||
}
|
||||
|
||||
verify := varBuf[varSize:]
|
||||
|
@ -386,7 +370,7 @@ func NewDecryptor(rd io.Reader) (*Decryptor, error) {
|
|||
cksum := h.Sum(nil)
|
||||
|
||||
if subtle.ConstantTimeCompare(verify, cksum[:]) == 0 {
|
||||
return nil, fmt.Errorf("decrypt: header corrupted")
|
||||
return nil, ErrBadHeader
|
||||
}
|
||||
|
||||
d := &Decryptor{
|
||||
|
@ -396,7 +380,7 @@ func NewDecryptor(rd io.Reader) (*Decryptor, error) {
|
|||
|
||||
err = d.Unmarshal(varBuf[:varSize])
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("decrypt: decode error: %s", err)
|
||||
return nil, fmt.Errorf("decrypt: decode error: %w", err)
|
||||
}
|
||||
|
||||
if d.ChunkSize == 0 || d.ChunkSize >= maxChunkSize {
|
||||
|
@ -408,7 +392,7 @@ func NewDecryptor(rd io.Reader) (*Decryptor, error) {
|
|||
}
|
||||
|
||||
if len(d.Keys) == 0 {
|
||||
return nil, fmt.Errorf("decrypt: no wrapped keys")
|
||||
return nil, ErrNoWrappedKeys
|
||||
}
|
||||
|
||||
// sanity check on the wrapped keys
|
||||
|
@ -430,18 +414,18 @@ func (d *Decryptor) SetPrivateKey(sk *PrivateKey, senderPk *PublicKey) error {
|
|||
for i, w := range d.Keys {
|
||||
key, err = d.unwrapKey(w, sk)
|
||||
if err != nil {
|
||||
return fmt.Errorf("decrypt: can't unwrap key %d: %s", i, err)
|
||||
return fmt.Errorf("decrypt: can't unwrap key %d: %w", i, err)
|
||||
}
|
||||
if key != nil {
|
||||
goto havekey
|
||||
}
|
||||
}
|
||||
|
||||
return fmt.Errorf("decrypt: wrong key")
|
||||
return ErrBadKey
|
||||
|
||||
havekey:
|
||||
if err := d.verifySender(key, sk, senderPk); err != nil {
|
||||
return fmt.Errorf("decrypt: %s", err)
|
||||
return fmt.Errorf("decrypt: %w", err)
|
||||
}
|
||||
|
||||
d.key = key
|
||||
|
@ -455,12 +439,12 @@ havekey:
|
|||
|
||||
aes, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return fmt.Errorf("decrypt: %s", err)
|
||||
return fmt.Errorf("decrypt: %w", err)
|
||||
}
|
||||
|
||||
d.ae, err = cipher.NewGCMWithNonceSize(aes, _AEADNonceLen)
|
||||
if err != nil {
|
||||
return fmt.Errorf("decrypt: %s", err)
|
||||
return fmt.Errorf("decrypt: %w", err)
|
||||
}
|
||||
d.buf = make([]byte, int(d.ChunkSize)+d.ae.Overhead())
|
||||
return nil
|
||||
|
@ -475,11 +459,11 @@ func (d *Decryptor) AuthenticatedSender() bool {
|
|||
// Decrypt the file and write to 'wr'
|
||||
func (d *Decryptor) Decrypt(wr io.Writer) error {
|
||||
if d.key == nil {
|
||||
return fmt.Errorf("decrypt: wrapped-key not decrypted (missing SetPrivateKey()?")
|
||||
return ErrNoKey
|
||||
}
|
||||
|
||||
if d.stream {
|
||||
return fmt.Errorf("decrypt: can't use Decrypt() after using streaming I/O")
|
||||
return ErrDecStarted
|
||||
}
|
||||
|
||||
if d.eof {
|
||||
|
@ -495,7 +479,7 @@ func (d *Decryptor) Decrypt(wr io.Writer) error {
|
|||
if len(c) > 0 {
|
||||
err = fullwrite(c, wr)
|
||||
if err != nil {
|
||||
return fmt.Errorf("decrypt: %s", err)
|
||||
return fmt.Errorf("decrypt: %w", err)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -507,143 +491,6 @@ func (d *Decryptor) Decrypt(wr io.Writer) error {
|
|||
return nil
|
||||
}
|
||||
|
||||
// Wrap sender's signature of the encryption key
|
||||
func wrapSenderSig(sig []byte, key, salt []byte) ([]byte, error) {
|
||||
aes, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %s", err)
|
||||
}
|
||||
|
||||
ae, err := cipher.NewGCM(aes)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %s", err)
|
||||
}
|
||||
|
||||
tagsize := ae.Overhead()
|
||||
nonceSize := ae.NonceSize()
|
||||
|
||||
nonce := makeNonce([]byte(_WrapSenderNonce), salt)[:nonceSize]
|
||||
esig := make([]byte, tagsize+len(sig))
|
||||
|
||||
return ae.Seal(esig[:0], nonce, sig, nil), nil
|
||||
}
|
||||
|
||||
// unwrap sender's signature using 'key' and extract the signature
|
||||
// Optionally, verify the signature using the sender's PK (if provided).
|
||||
func (d *Decryptor) verifySender(key []byte, sk *PrivateKey, senderPK *PublicKey) error {
|
||||
aes, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return fmt.Errorf("unwrap: %s", err)
|
||||
}
|
||||
|
||||
ae, err := cipher.NewGCM(aes)
|
||||
if err != nil {
|
||||
return fmt.Errorf("unwrap: %s", err)
|
||||
}
|
||||
|
||||
nonceSize := ae.NonceSize()
|
||||
nonce := makeNonce([]byte(_WrapSenderNonce), d.Salt)[:nonceSize]
|
||||
sig := make([]byte, ed25519.SignatureSize)
|
||||
sig, err = ae.Open(sig[:0], nonce, d.SenderSign, nil)
|
||||
if err != nil {
|
||||
return fmt.Errorf("unwrap: can't open sender info: %s", err)
|
||||
}
|
||||
|
||||
var zero [ed25519.SignatureSize]byte
|
||||
|
||||
// Did the sender actually sign anything?
|
||||
if subtle.ConstantTimeCompare(zero[:], sig) == 0 {
|
||||
d.auth = true
|
||||
|
||||
if senderPK != nil {
|
||||
ss := &Signature{
|
||||
Sig: sig,
|
||||
}
|
||||
|
||||
ok := senderPK.VerifyMessage(key, ss)
|
||||
if !ok {
|
||||
return fmt.Errorf("unwrap: sender verification failed")
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Wrap data encryption key 'k' with the sender's PK and our ephemeral curve SK
|
||||
// basically, we do two scalarmults:
|
||||
// a) Ephemeral encryption/decryption SK x receiver PK
|
||||
// b) Sender's SK x receiver PK
|
||||
func (e *Encryptor) wrapKey(pk *PublicKey) (*pb.WrappedKey, error) {
|
||||
rxPK := pk.toCurve25519PK()
|
||||
dkek, err := curve25519.X25519(e.encSK, rxPK)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %s", err)
|
||||
}
|
||||
|
||||
aes, err := aes.NewCipher(dkek)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %s", err)
|
||||
}
|
||||
|
||||
ae, err := cipher.NewGCM(aes)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %s", err)
|
||||
}
|
||||
|
||||
tagsize := ae.Overhead()
|
||||
nonceSize := ae.NonceSize()
|
||||
|
||||
nonceR := makeNonce([]byte(_WrapReceiverNonce), e.Salt)[:nonceSize]
|
||||
ekey := make([]byte, tagsize+len(e.key))
|
||||
|
||||
w := &pb.WrappedKey{
|
||||
DKey: ae.Seal(ekey[:0], nonceR, e.key, pk.Pk),
|
||||
}
|
||||
|
||||
return w, nil
|
||||
}
|
||||
|
||||
// Unwrap a wrapped key using the receivers Ed25519 secret key 'sk' and
|
||||
// senders ephemeral PublicKey
|
||||
func (d *Decryptor) unwrapKey(w *pb.WrappedKey, sk *PrivateKey) ([]byte, error) {
|
||||
ourSK := sk.toCurve25519SK()
|
||||
dkek, err := curve25519.X25519(ourSK, d.Pk)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unwrap: %s", err)
|
||||
}
|
||||
|
||||
aes, err := aes.NewCipher(dkek)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unwrap: %s", err)
|
||||
}
|
||||
|
||||
ae, err := cipher.NewGCM(aes)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unwrap: %s", err)
|
||||
}
|
||||
|
||||
// 32 == AES-256 key size
|
||||
want := 32 + ae.Overhead()
|
||||
if len(w.DKey) != want {
|
||||
return nil, fmt.Errorf("unwrap: incorrect decrypt bytes (need %d, saw %d)", want, len(w.DKey))
|
||||
}
|
||||
|
||||
nonceSize := ae.NonceSize()
|
||||
|
||||
nonceR := makeNonce([]byte(_WrapReceiverNonce), d.Salt)[:nonceSize]
|
||||
pk := sk.PublicKey()
|
||||
|
||||
dkey := make([]byte, 32) // decrypted data decryption key
|
||||
|
||||
// we indicate incorrect receiver SK by returning a nil key
|
||||
dkey, err = ae.Open(dkey[:0], nonceR, w.DKey, pk.Pk)
|
||||
if err != nil {
|
||||
return nil, nil
|
||||
}
|
||||
|
||||
return dkey, nil
|
||||
}
|
||||
|
||||
// Decrypt exactly one chunk of data
|
||||
func (d *Decryptor) decrypt(i uint32) ([]byte, bool, error) {
|
||||
var b [8]byte
|
||||
|
@ -679,25 +526,192 @@ func (d *Decryptor) decrypt(i uint32) ([]byte, bool, error) {
|
|||
}
|
||||
|
||||
binary.BigEndian.PutUint32(b[4:], i)
|
||||
h := sha256.New()
|
||||
h.Write(d.Salt)
|
||||
h.Write(b[:])
|
||||
nonce := h.Sum(nonceb[:0])[:d.ae.NonceSize()]
|
||||
nonce := makeNonceV2(nonceb[:], d.Salt, b[:])
|
||||
|
||||
z := m + ovh
|
||||
n, err = io.ReadFull(d.rd, d.buf[:z])
|
||||
if err != nil {
|
||||
return nil, false, fmt.Errorf("decrypt: premature EOF while reading block %d: %s", i, err)
|
||||
return nil, false, fmt.Errorf("decrypt: premature EOF while reading block %d: %w", i, err)
|
||||
}
|
||||
|
||||
p, err = d.ae.Open(d.buf[:0], nonce, d.buf[:n], b[:])
|
||||
if err != nil {
|
||||
return nil, false, fmt.Errorf("decrypt: can't decrypt chunk %d: %s", i, err)
|
||||
return nil, false, fmt.Errorf("decrypt: can't decrypt chunk %d: %w", i, err)
|
||||
}
|
||||
|
||||
return p[:m], eof, nil
|
||||
}
|
||||
|
||||
// Wrap sender's signature of the encryption key
|
||||
func wrapSenderSig(sig []byte, key, salt []byte) ([]byte, error) {
|
||||
aes, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %w", err)
|
||||
}
|
||||
|
||||
ae, err := cipher.NewGCM(aes)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %w", err)
|
||||
}
|
||||
|
||||
tagsize := ae.Overhead()
|
||||
nonceSize := ae.NonceSize()
|
||||
|
||||
nonce := sha256Slices([]byte(_WrapSenderNonce), salt)[:nonceSize]
|
||||
esig := make([]byte, tagsize+len(sig))
|
||||
|
||||
return ae.Seal(esig[:0], nonce, sig, nil), nil
|
||||
}
|
||||
|
||||
// unwrap sender's signature using 'key' and extract the signature
|
||||
// Optionally, verify the signature using the sender's PK (if provided).
|
||||
func (d *Decryptor) verifySender(key []byte, sk *PrivateKey, senderPK *PublicKey) error {
|
||||
aes, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return fmt.Errorf("unwrap: %w", err)
|
||||
}
|
||||
|
||||
ae, err := cipher.NewGCM(aes)
|
||||
if err != nil {
|
||||
return fmt.Errorf("unwrap: %w", err)
|
||||
}
|
||||
|
||||
nonceSize := ae.NonceSize()
|
||||
nonce := sha256Slices([]byte(_WrapSenderNonce), d.Salt)[:nonceSize]
|
||||
sig := make([]byte, ed25519.SignatureSize)
|
||||
sig, err = ae.Open(sig[:0], nonce, d.SenderSign, nil)
|
||||
if err != nil {
|
||||
return fmt.Errorf("unwrap: can't open sender info: %w", err)
|
||||
}
|
||||
|
||||
var zero [ed25519.SignatureSize]byte
|
||||
|
||||
// Did the sender actually sign anything?
|
||||
if subtle.ConstantTimeCompare(zero[:], sig) == 0 {
|
||||
d.auth = true
|
||||
|
||||
if senderPK != nil {
|
||||
ss := &Signature{
|
||||
Sig: sig,
|
||||
}
|
||||
|
||||
ok := senderPK.VerifyMessage(key, ss)
|
||||
if !ok {
|
||||
return fmt.Errorf("unwrap: sender verification failed")
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Wrap data encryption key 'k' with the sender's PK and our ephemeral curve SK
|
||||
// basically, we do two scalarmults:
|
||||
// a) Ephemeral encryption/decryption SK x receiver PK
|
||||
// b) Sender's SK x receiver PK
|
||||
func (e *Encryptor) wrapKey(pk *PublicKey) (*pb.WrappedKey, error) {
|
||||
rxPK := pk.toCurve25519PK()
|
||||
dkek, err := curve25519.X25519(e.encSK, rxPK)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %w", err)
|
||||
}
|
||||
|
||||
aes, err := aes.NewCipher(dkek)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %w", err)
|
||||
}
|
||||
|
||||
ae, err := cipher.NewGCM(aes)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("wrap: %w", err)
|
||||
}
|
||||
|
||||
tagsize := ae.Overhead()
|
||||
nonceSize := ae.NonceSize()
|
||||
|
||||
nonceR := sha256Slices([]byte(_WrapReceiverNonce), e.Salt)[:nonceSize]
|
||||
ekey := make([]byte, tagsize+len(e.key))
|
||||
|
||||
w := &pb.WrappedKey{
|
||||
DKey: ae.Seal(ekey[:0], nonceR, e.key, pk.Pk),
|
||||
}
|
||||
|
||||
return w, nil
|
||||
}
|
||||
|
||||
// Unwrap a wrapped key using the receivers Ed25519 secret key 'sk' and
|
||||
// senders ephemeral PublicKey
|
||||
func (d *Decryptor) unwrapKey(w *pb.WrappedKey, sk *PrivateKey) ([]byte, error) {
|
||||
ourSK := sk.toCurve25519SK()
|
||||
dkek, err := curve25519.X25519(ourSK, d.Pk)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unwrap: %w", err)
|
||||
}
|
||||
|
||||
aes, err := aes.NewCipher(dkek)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unwrap: %w", err)
|
||||
}
|
||||
|
||||
ae, err := cipher.NewGCM(aes)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unwrap: %w", err)
|
||||
}
|
||||
|
||||
// 32 == AES-256 key size
|
||||
want := 32 + ae.Overhead()
|
||||
if len(w.DKey) != want {
|
||||
return nil, fmt.Errorf("unwrap: incorrect decrypt bytes (need %d, saw %d)", want, len(w.DKey))
|
||||
}
|
||||
|
||||
nonceSize := ae.NonceSize()
|
||||
|
||||
nonceR := sha256Slices([]byte(_WrapReceiverNonce), d.Salt)[:nonceSize]
|
||||
pk := sk.PublicKey()
|
||||
|
||||
dkey := make([]byte, 32) // decrypted data decryption key
|
||||
|
||||
// we indicate incorrect receiver SK by returning a nil key
|
||||
dkey, err = ae.Open(dkey[:0], nonceR, w.DKey, pk.Pk)
|
||||
if err != nil {
|
||||
return nil, nil
|
||||
}
|
||||
|
||||
return dkey, nil
|
||||
}
|
||||
|
||||
// Write _all_ bytes of buffer 'buf'
|
||||
func fullwrite(buf []byte, wr io.Writer) error {
|
||||
n := len(buf)
|
||||
|
||||
for n > 0 {
|
||||
m, err := wr.Write(buf)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
n -= m
|
||||
buf = buf[m:]
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// make aead nonce from salt, chunk-size and block#
|
||||
func makeNonceV2(dest []byte, salt []byte, ad []byte) []byte {
|
||||
n := len(ad)
|
||||
copy(dest, salt[:n])
|
||||
copy(dest[n:], ad)
|
||||
return dest
|
||||
}
|
||||
|
||||
// make aead nonce from salt, chunk-size and block# for v1
|
||||
// This is here for historical documentation purposes
|
||||
func makeNonceV1(dest []byte, salt []byte, ad []byte) []byte {
|
||||
h := sha256.New()
|
||||
h.Write(salt)
|
||||
h.Write(ad)
|
||||
return h.Sum(dest[:0])
|
||||
}
|
||||
|
||||
// generate a KEK from a shared DH key and a Pub Key
|
||||
func expand(shared, pk []byte) ([]byte, error) {
|
||||
kek := make([]byte, 32)
|
||||
|
@ -716,7 +730,8 @@ func newSender() (sk, pk []byte, err error) {
|
|||
return
|
||||
}
|
||||
|
||||
func makeNonce(v ...[]byte) []byte {
|
||||
// do sha256 on a list of byte slices
|
||||
func sha256Slices(v ...[]byte) []byte {
|
||||
h := sha256.New()
|
||||
for _, x := range v {
|
||||
h.Write(x)
|
||||
|
|
43
sign/errors.go
Normal file
43
sign/errors.go
Normal file
|
@ -0,0 +1,43 @@
|
|||
// errors.go - list of all exportable errors in this module
|
||||
//
|
||||
// (c) 2016 Sudhi Herle <sudhi@herle.net>
|
||||
//
|
||||
// Licensing Terms: GPLv2
|
||||
//
|
||||
// If you need a commercial license for this work, please contact
|
||||
// the author.
|
||||
//
|
||||
// This software does not come with any express or implied
|
||||
// warranty; it is provided "as is". No claim is made to its
|
||||
// suitability for any purpose.
|
||||
//
|
||||
|
||||
package sign
|
||||
|
||||
import (
|
||||
"errors"
|
||||
)
|
||||
|
||||
var (
|
||||
ErrClosed = errors.New("encrypt: stream already closed")
|
||||
ErrNoKey = errors.New("decrypt: No private key set for decryption")
|
||||
ErrEncStarted = errors.New("encrypt: can't add new recipient after encryption has started")
|
||||
ErrDecStarted = errors.New("decrypt: can't add new recipient after decryption has started")
|
||||
ErrEncIsStream = errors.New("encrypt: can't use Encrypt() after using streaming I/O")
|
||||
ErrNotSigTool = errors.New("decrypt: Not a sigtool encrypted file?")
|
||||
ErrHeaderTooBig = errors.New("decrypt: header too large (max 1048576)")
|
||||
ErrHeaderTooSmall = errors.New("decrypt: header too small (min 32)")
|
||||
ErrBadHeader = errors.New("decrypt: header corrupted")
|
||||
ErrNoWrappedKeys = errors.New("decrypt: No wrapped keys in encrypted file")
|
||||
ErrBadKey = errors.New("decrypt: wrong key")
|
||||
ErrBadSender = errors.New("unwrap: sender verification failed")
|
||||
|
||||
ErrIncorrectPassword = errors.New("ssh: invalid passphrase")
|
||||
ErrNoPEMFound = errors.New("ssh: no PEM block found")
|
||||
ErrBadPublicKey = errors.New("ssh: malformed public key")
|
||||
ErrKeyTooShort = errors.New("ssh: public key too short")
|
||||
ErrBadTrailers = errors.New("ssh: trailing junk in public key")
|
||||
ErrBadFormat = errors.New("ssh: invalid openssh private key format")
|
||||
ErrBadLength = errors.New("ssh: private key unexpected length")
|
||||
ErrBadPadding = errors.New("ssh: padding not as expected")
|
||||
)
|
12
sign/ssh.go
12
sign/ssh.go
|
@ -25,7 +25,6 @@ import (
|
|||
"encoding/base64"
|
||||
"encoding/binary"
|
||||
"encoding/pem"
|
||||
"errors"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
|
@ -34,17 +33,6 @@ import (
|
|||
"golang.org/x/crypto/ssh"
|
||||
)
|
||||
|
||||
var (
|
||||
ErrIncorrectPassword = errors.New("ssh: Invalid Passphrase")
|
||||
ErrNoPEMFound = errors.New("no PEM block found")
|
||||
ErrBadPublicKey = errors.New("ssh: malformed public key")
|
||||
ErrKeyTooShort = errors.New("ssh: public key too short")
|
||||
ErrBadTrailers = errors.New("ssh: trailing junk in public key")
|
||||
ErrBadFormat = errors.New("ssh: invalid openssh private key format")
|
||||
ErrBadLength = errors.New("ssh: private key unexpected length")
|
||||
ErrBadPadding = errors.New("ssh: padding not as expected")
|
||||
)
|
||||
|
||||
const keySizeAES256 = 32
|
||||
|
||||
// ParseEncryptedRawPrivateKey returns a private key from an
|
||||
|
|
|
@ -15,8 +15,6 @@
|
|||
package sign
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
)
|
||||
|
||||
|
@ -98,7 +96,7 @@ func (w *encWriter) Close() error {
|
|||
}
|
||||
|
||||
w.n = 0
|
||||
w.err = errClosed
|
||||
w.err = ErrClosed
|
||||
return w.wr.Close()
|
||||
}
|
||||
|
||||
|
@ -113,7 +111,7 @@ type encReader struct {
|
|||
// NewStreamReader returns an io.Reader to read from the decrypted stream
|
||||
func (d *Decryptor) NewStreamReader() (io.Reader, error) {
|
||||
if d.key == nil {
|
||||
return nil, fmt.Errorf("streamReader: wrapped-key not decrypted (missing SetPrivateKey()?")
|
||||
return nil, ErrNoKey
|
||||
}
|
||||
|
||||
if d.eof {
|
||||
|
@ -158,7 +156,3 @@ func (r *encReader) Read(b []byte) (int, error) {
|
|||
|
||||
return n, nil
|
||||
}
|
||||
|
||||
var (
|
||||
errClosed = errors.New("encrypt: stream already closed")
|
||||
)
|
||||
|
|
1
version
1
version
|
@ -1 +0,0 @@
|
|||
1.1.1
|
Loading…
Add table
Reference in a new issue